Abstract:Disease outbreaks caused by microbial biofilm contamination can cause major public health problems. The traditional methods such as heat treatment and addition of chemical bactericides are currently widely used to inhibit biofilm contamination in the food industry. However, heat treatment will cause the loss of nutrients in foods such as meat and meat products, and will destroy the texture and flavor characteristics of the products. Addition of chemical fungicides does not conform to the current safe and healthy consumption concept. In addition, the unique structural and functional properties of biofilms enable it to resist environmental stress and thus to most chemical bactericides. Therefore, finding a safe and efficient method to inhibit biofilm is an urgent problem in the food industry. The application of ultrasound technology as a nonheat treatment method for inhibiting biofilm pollution has attracted more and more attention. Compared with the traditional sterilization technology, ultrasonic technology not only has the advantages of simple operation, energy saving and extending food shelf life, but also plays a very important role in maintaining the sensory characteristics, functional characteristics and nutritional value of foods. This article reviews the mechanism, metabolic process and influential factors of biofilm formation, and provides an overview of ultrasound technology. Furthermore, the mechanism and influential factors of inhibit the inhibition of microbial biofilm contamination by ultrasound technology are described. Finally, the recent application of ultrasound technology in meat and meat products and future prospects are discussed.