|
|
Effect of Catechin on the Oxidation, Structure and Gel Properties of Myofibrillar Protein |
JIA Na, JIN Boyang, LIU Dan, SUN Jia, LIU Dengyong |
National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Laboratory of Liaoning Province, College of Food and Technology, Bohai University, Jinzhou 121013, China |
|
|
Abstract The effects of different concentrations of catechin (10, 50, 100 and 150 μmol/g proteins) on the oxidation, structure and gel properties of myofibrillar proteins were studied. Oxidation was carried out in a hydroxyl radical oxidation system (10 μmol/L FeCl3, 100 μmol/L VC and 1 mmol/L H2O2). Non-oxidized and oxidized myofibrillar proteins without added catechin were used as control groups. The carbonyl content, total sulfhydryl content, surface hydrophobicity, solubility, particle size distribution, gel strength, water holding capacity and rheological properties of all samples were determined, and the microstructure of heat-induced protein gel was observed. The results showed that catechin could reduce the production of carbonyl compounds, but at high concentration promote the oxidation of myofibrillar proteins. Compared with the control groups, catechin decreased the surface hydrophobicity. With increased concentration of catechin, the sulfhydryl content decreased gradually, the solubility declined significantly, the particle size increased and the gel strength and water-holding capacity fell gradually. The gel microstructure became more loose and porous and the protein micelles were aggregated. Medium and high concentrations of catechin (50, 100 and 150 μmol/g) caused the protein to lose its typical rheological behavior. In conclusion, high and medium concentrations of catechin could covalently cross-link with myofibrillar proteins and cause the hydrophobic aggregation, ultimately weakening the gel properties of myofibrillar proteins.
|
|
|
|
|
|
|
|
|