肉类食品是人类饮食的基本组成部分,也是人类蛋白质、维生素和矿物质的优质来源[1]。肉制品营养丰富,故在加工和贮藏过程中易发生由氧化和微生物引起的品质劣变,表现出异味、营养价值下降甚至腐败等现象[2]。尤其是当肉中富含不饱和脂肪酸与胆固醇时,切碎、热加工等处理使游离脂肪酸和氧气充分接触,从而加速肉制品氧化[3-4]。加工、运输过程中由微生物污染导致的肉类腐败,极易引起肉的色泽、风味、质地等变化,甚至会产生有毒代谢物质,威胁人体健康。为延缓肉制品中的脂质和蛋白质氧化,防止微生物污染与增殖,肉制品加工中通常会使用合成抗氧化剂及抑菌剂,以达到防腐保鲜的目的,如抗氧化剂丁基羟基茴香醚(butylhydroxyanisole,BHA)和二丁基羟基甲苯(butylatedhydroxytoluene,BHT)或抑菌剂(如硝酸盐和亚硝酸盐),大量研究表明,这些化合物的食用与人类一些慢性疾病的发展存在一定的相关性[5]。
食品“清洁标签”起源于欧盟,主要为满足消费者对天然或绿色食品的需求,在产品中尽量去除或替换人造或化学添加剂,使产品成分天然、有机、不含复杂的化学成分且制成过程越简单越好。已有多项研究将水果、草药和蔬菜等提取物作为合成添加剂的替代品应用于肉制品加工中[5-8]。植物活性成分不仅能够延缓肉制品在贮藏期间的蛋白和脂质氧化,还能起到抑菌作用,以延长肉制品货架期[9]。这些植物活性成分在增强食品成分稳定性的同时,还可以维持其初始的感官特性[10]。
本文通过总结近几年肉制品中植物抗氧化和抑菌成分的应用研究进展,对植物活性成分种类和来源、防腐保鲜作用机理及在肉制品中的应用效果进行综述,并对植物活性成分在肉制品保鲜防腐中的应用提出展望,以期为植物活性成分在肉制品中的应用提供理论参考。
天然活性成分在自然界中分布广泛,其中植物是天然活性成分的良好来源。植物活性成分是植物的次生代谢产物,主要来源于蔬菜、水果、油料作物种子、树木、精油及中草药的茎、果实、叶、花等部位,具有分布范围广、含量高、效果好等特点[11]。可将提取出的植物活性成分分为酚类、萜烯类、黄酮类化合物等[12],这些天然活性成分不属于植物的营养部分,但可以在食品中起到抗氧化、抑菌的功能。表1总结了植物活性成分的分类及其主要代表性化合物。
表1 植物活性成分的种类、代表性化合物及来源
Table 1 Types, representatives and sources of plant active ingredients
种类代表性化合物主要来源酚酸类化合物羟基苯甲酸、没食子酸、鞣花酸、肉桂酸、丁香酸、丁香苷、迷迭香酸、姜黄素、没食子单宁、鞣花单宁栓皮栎叶、绿茶叶、生姜、橄榄油、橡木、甜菜根、竹叶、红花生皮、生姜巴西莓、黑莓、蓝莓、黑桑葚、香蕉、玻璃苣、绿茶叶、生姜、萝卜、石榴皮、葡萄籽、山楂叶、银杏叶、苦参精油类化合物丁香酚、香芹酚、百里香酚、薄荷醇百里香、丁香、棕榈油、黄芪叶、肉桂皮萜类化合物香叶醇、薄荷醇、芳樟醇、香茅醇、香芹酮、乙酸香叶酯、丁香根乙酸酯针叶树、迷迭香、牛至黄酮类化合物芹黄素、黄芩黄素、槲皮素、芦丁、儿茶素、原花青素、柑橘黄酮、葛根素
在肉制品加工和贮藏过程中,蛋白质和脂质会持续地进行氧化降解反应[13],其过程如图1所示。蛋白质氧化机制主要通过活性自由基和由脂质氧化产生的中间产物间接引发蛋白质的共价修饰变化,从而引发蛋白质氧化,而脂质氧化机制主要包括链引发、链传递和链终止。蛋白质和脂质氧化二者相互促进,导致肉制品品质下降[14]。
图1 植物活性成分抗氧化作用机理示意图
Fig. 1 Schematic diagram of the antioxidant mechanism of natural active ingredients from plants
植物抗氧化成分大部分是通过破坏氧化链反应、螯合过渡金属离子、清除自由基和反应物质来达到抗氧化的作用,如图1所示。抗氧化成分的有效性取决于其分子结构和极性,根据其作用机制可以分为Ⅰ类和Ⅱ类抗氧化成分[15]。Ⅰ类抗氧化成分根据分子的化学性质,可以作为自由基受体清除、延迟或抑制自氧化的起始步骤或中断传播步骤(主要发生在链引发、链传递和链终止阶段),其机理包括与不饱和脂肪酸缓慢反应或与过氧自由基快速反应生成稳定自由基,而稳定的自由基可能会与过氧自由基再次反应生成稳定的过氧化物,或与抗氧化成分再聚合。Ⅱ类抗氧化成分可以通过螯合具有催化作用的金属离子,为初始抗氧化成分提供氢离子,将过氧化氢分解为非自由基物质,使单线态氧失活,吸收紫外线辐射,清除活性氧(reactive oxygen species,ROS),对初级抗氧化剂的抗氧化活性起到增强作用[15]。
大多数植物活性成分具有抑菌特性是由于它们与微生物的部分细胞位点相互作用,从而导致细胞膜破裂、细胞质壁分离、细胞死亡[16]。这种作用机理主要分为3 类:1)对于菌体细胞壁和细胞膜的破坏。细胞壁和细胞膜通透性、完整性的破坏导致营养物质及代谢产物无法正常传递,微生物因营养缺失而无法正常生长、屏障功能受损,细胞内容物如细胞器渗出,最终致使细胞失活死亡[17];2)对蛋白质和遗传物质结构的破坏。植物活性成分进入细胞内与极性物质结合,导致DNA无法正常进行复制或通过影响功能性蛋白和酶的活性抑制细胞生长[18];3)对菌体内能量代谢过程的干扰。植物活性成分通过破坏细胞供氧功能抑制微生物呼吸,使合成代谢通路受阻,最终导致细胞自溶[19]。植物活性成分主要抑菌作用模式如图2所示。
图2 植物活性成分抑菌作用机理示意图
Fig. 2 Schematic diagram of the antimicrobial mechanism of natural active ingredients from plants
3.1.1 果蔬来源的植物活性成分抗氧化应用效果
果蔬中不仅有对人体有益的维生素、膳食纤维及矿物质等,而且具有的高含量酚类物质可以作为天然抗氧化剂应用于肉制品加工中,水果的果皮、果肉和种子等副产物均表现出一定的抗氧化活性,它们的抗氧化能力与酚类物质的含量有关。
浆果是生物活性化合物的重要来源,是多酚类物质(酚酸、黄酮醇、花青素和单宁等)最丰富的来源之一,因此从浆果中获得的提取物会显示出很强的抗氧化活性[20]。Martín-Mateos等[21]将不同比例的樱桃提取物添加于牛肉饼中发现,当樱桃提取物的含量增加到6%以上时,作为α-生育酚异构体的VE含量及苯酚含量增加,且总抗氧化活性增强;与未添加提取物相比,樱桃提取物可以显著改善汉堡中牛肉饼的脂质和蛋白氧化程度。此外,添加0.2%黑桑葚水提取物和7.5%黑莓果渣提取物均可以显著抑制牛肉饼的脂质氧化程度[22]。其他浆果提取物,如野樱莓、蓝莓、红醋栗果渣提取物对肉饼的总羰基含量有显著影响[23],改善了牛肉饼的蛋白质氧化程度,但抑制蛋白质氧化效果不如脂质氧化明显,其原因可能与酚类物质和蛋白质之间的共价和非共价相互作用相关[24],在猪肉饼中添加的巴西莓果肉提取物(250 mg/kg)可以作为异抗坏血酸钠(500 mg/kg)的天然抗氧化剂替代品[25]。而与BHT相比,葡萄籽提取物对于干发酵猪肉香肠的抗氧化效果更佳[26]。
叶子中酚类化合物含量通常高于果实,因此有研究将黑樱桃叶提取物作为天然抗氧化剂应用于肉制品中,在冷藏期间提取物可以维持α-生育酚含量稳定,并在其添加量为0.05%、0.10%时有效抑制牛肉汉堡的脂质氧化程度,且在0.10%的添加量下延长了其保质期、增强了风味、提高了嫩度及整体质量[27]。番石榴叶提取物同样可以有效减缓新鲜猪肉肠的脂质氧化过程,添加量为5 000 mg/kg的番石榴叶提取物与200 mg/kg的BHT对猪肉肠具有相同的抑制脂肪氧化能力。水果不同部位的提取物在肉制品加工过程中均表现出一定的抗氧化活性,如香蕉花、芒果皮、荔枝籽等[28-30]。香蕉的雄花作为香蕉作物的主要残留物之一,具有高含量的抗氧化化合物。Rodrigues等[28]测定香蕉的各部分提取物发现,雄花提取物的抗氧化活性最强,其对贮藏期间猪肉肠的脂质氧化具有显著的抑制作用;而在鸡肉肠中添加4%的芒果皮提取物不仅可以抑制蛋白质氧化和脂质氧化,还可以明显改善鸡肉肠的质量[29]。在生肉酱中添加荔枝籽提取物可以显著抑制脂质氧化,并且不会对肉酱的感官特性产生不良影响[30]。
将富含硝酸盐的蔬菜应用于肉制品中可以有效替代亚硝酸钠,如将菠菜[31]、生菜和芹菜应用于腌制肉制品中[32],将萝卜和甜菜根应用于发酵肉制品中不仅可以起到抗氧化作用,还能维持肉制品的色泽[33]。其中,萝卜粉对发酵香肠的脂质氧化具有显著抑制作用[34]。
3.1.2 草药和香料类来源植物活性成分抗氧化应用效果
草药和香辛料含有的黄酮类化合物、苯酚、皂苷等均具有较强的抗氧化性。有研究[35]将栓皮栎叶作为天然抗氧化剂应用于食品中,发现各浓度的栓皮栎叶提取物均可抑制鸡胸肉的脂质氧化,2%栓皮烁叶提取物(水、乙醇体积比1∶1或3∶7)抑制鸡胸肉氧化能力与BHT(溶于0.1%乙醇)相当。Boeira等[36]将柠檬草提取物作为天然抗氧化剂加入到鸡肉肠中,与0.1%的异抗坏血酸钠相比,0.5%、1.0%的柠檬草提取物均可有效抑制脂质氧化,并有效保持鸡肉香肠冷藏时间到42 d;在猪肉饼中添加0.075、0.150 μL/g的百里香提取物,不仅可以改善色泽、延长货架期,还可以显著降低蛋白质和脂质氧化程度(P<0.05),且添加提取物组的硫代巴比妥酸反应物(thiobarbituric acid reactive substances,TBARs)值始终保持在0.5 mg MDA/kg以下[37]。
有研究对比了不同草药或香辛料的抗氧化能力。Martinez等[38]在牛肉饼或新鲜猪肉肠中添加琉璃苣籽粕、绿茶提取物可以显著抑制脂质氧化[39],为进一步确定每种提取物的最适浓度,通过向羊排喷洒不同浓度提取物发现,0.5%绿茶提取物和10%琉璃苣提取物可以有效抑制羊排的脂质氧化并保持产品色泽稳定,在降低高铁肌红蛋白形成、延长保质期的同时,不改变羊肉的特有风味[40]。与添加异抗坏血酸钠组相比,0.05%的针叶樱桃果粉、甘草提取物和迷迭香提取物均降低了鳄肉的TBARs值,且甘草提取物(500 mg/kg)在鳄肉块中发挥的氧化抑制作用最强[41]。在其他研究中,甘草提取物可有效抑制猪肉汉堡的脂质氧化,生姜提取物能够显著抑制羊肉中蛋白质和脂质氧化(P<0.05)[42]。
3.1.3 其他来源植物活性成分抗氧化应用效果
农业食品加工废物再利用在近年来逐渐受到重视,许多研究通过对加工废物的提取,发现其作为天然抗氧化剂的潜力并应用于肉制品中。酿造葡萄酒所需的木桶在制造过程中会产生大量的废弃物,而优质橡木中含有大量酚类物质,Soriano等[43]将橡木提取物与合成添加剂抗坏血酸钠相比,橡木提取物(0.5%、0.1%)具有更高的抗氧化能力,显著抑制了猪肉的脂质氧化和大肠杆菌的生长。橄榄油废料提取物也可以延缓羊肉饼变色,极显著抑制羊肉饼脂质氧化(P<0.01),并使羊肉饼可以在4 ℃高氧气调包装条件下贮藏长达9 d[44]。
植物活性成分在肉制品中的抗氧化应用部分研究如表2所示。
表2 植物活性成分在肉制品中的抗氧化应用
Table 2 Application of natural active substances from plants as antioxidants in meat products
注:TE. 生育酚;没食子酸. GAE;MDA. 丙二醛;/. 文献未说明。下同。
来源自由基清除能力肉制品在肉制品中的最佳用量抗氧化作用参考文献芒果皮提取物1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性最高为(4.7±0.1)~(21.7±0.6)μmol/g(以TE当量计)鸡肉香肠加入4%芒果皮提取物于鸡肉香肠中在冷藏期间加入4%芒果皮提取物的香肠羰基含量变化最小,TBARs值显著低于未添加提取物的香肠[29]巴西莓提取物DPPH自由基清除活性为(47.57±0.83) μmol/g(以TE当量计)猪肉肉饼添加250 mg/kg阿萨伊提取物至猪肉中荔枝提取物/猪肉酱将荔枝提取物以1%质量比加入生猪肉酱中樱桃提取物/牛肉饼将樱桃按照质量比10%添加至碎肉中阿萨伊提取物的添加显著提高了肉饼的抗氧化活性,减少了脂质氧化程度[25]在贮藏15 d期间,添加荔枝提取物的肉酱过氧化值、TBARs值、酸度均显著低于空白样品[30]与未添加组牛肉相比,含有10%樱桃提取物的牛肉饼延缓蛋白质氧化能力最强[21]黑莓、黑樱桃、蓝莓和红醋栗果渣提取物黑莓、黑樱桃、蓝莓和红醋栗果渣提取物的DPPH自由基清除率分别为74.07%、73.28%、50.69%和82.14%牛肉饼果渣提取物按质量比7.5%添加于牛肉饼中加入浆果果渣提取物后TBARs值显著降低,贮藏6 d时,牛肉饼的蛋白质氧化有显著改善[23]冻干黑桑葚提取物DPPH自由基清除活性为(35.50±2.78) μg/mg(以TE当量计)牛肉饼添加0.2%黑桑葚提取物于牛肉饼中与未添加提取物的牛肉饼相比,黑桑葚提取物的添加可以显著降低牛肉饼的TBARs值[22]苦莓叶提取物DPPH自由基、2,2’-联氮-双-(3-乙基苯并噻唑啉-6-磺酸)(2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid),ABTS)阳离子自由基的半最大效应质量浓度(concentration for 50% of maximal effect, EC50)分别为(34.61±1.91)、(24.54±1.92) μg/mL牛肉饼添加0.1%苦莓叶提取物于牛肉饼中添加0.1%苦莓叶提取物可显著(P<0.05)减少脂质氧化程度,并有效保持冷藏过程中的色泽和口感[27]栓皮栎(栎树)叶提取物当水、乙醇体积比1∶1时,ABTS阳离子自由基清除活性最高为51.1 mg/g(以Trolox当量计),当水、乙醇体积比3∶7时,DPPH自由基清除率最高为22.7%鸡胸肉不同比例溶剂(水、乙醇体积比1∶1、3∶7)的提取物以2 mL/100 g添加于切碎的鸡胸肉中与BHT相比,所有添加提取物组均有效抑制了脂质氧化,并且控制氧化的能力相当于加入2% BHT[35]在巴西采收的有机香蕉(Musa cavendishii)的雄花提取物DPPH自由基半抑制质量浓度(half maximal inhibitory concentration,IC50)为0.46 mg/mL猪肉肠添加2%雄花提取物至香肠配方中香蕉雄花提取物的添加会显著抑制香肠贮藏期间的脂质氧化,并且有效维持香肠的感官质量[28]针叶树果粉、迷迭香和甘草提取物/鳄鱼肉添加0.05%针叶树果粉、甘草提取物、迷迭香提取物于鳄鱼块柠檬草提取物DPPH自由基的IC50为0.45 mg/mL鸡肉香肠添加0.5%、1.0%柠檬草提取物于鸡肉香肠中添加甘草提取物的鳄鱼块在贮藏期结束时的TBARs值显著降低[41]使用0.5%和1.0%柠檬草提取物处理的鸡肉香肠TBARs值在保质期内显著低于其他处理组,且可以延长香肠贮藏期长达42 d[36]番石榴叶提取物DPPH自由基的IC50为0.75 mg/g(以TE当量计)猪肉香肠添加4 000 mg/kg番石榴叶提取物番石榴叶提取物可有效减缓新鲜猪肉肠中的脂质氧化过程,降低香肠过氧化值、酸度的同时保持良好色泽[45]野生百里香提取物在40、50 ℃萃取条件下的野生百里香提取物DPPH自由基清除能力分别为0.058 3、0.037 5 mmol/g,ABTS阳离子自由基清除能力分别为0.665 6、0.576 7 mmol/g(以TE当量计)猪肉饼在50 ℃通过超临界流体萃取得到的野生百里香提取物按照0.075 μL/g添加至碎猪肉中野生百里香提取物的添加显著减缓了肉饼的脂质和蛋白质氧化,并在贮藏6 d后将总菌数减少到小于3(lg(CFU/g)),具有一定的抑菌作用[37]绿茶叶和玻璃苣种子提取物/羊排喷洒0.5%绿茶提取物或10%琉璃苣种子提取物于羊排生姜提取物/羊肉在磷酸盐缓冲液中添加6 滴生姜提取物溶液橄榄油废料提取物/羊肉饼添加400 mg GAE/kg橄榄废物提取物于羊肉中喷洒提取物可以有效抑制羊排脂质氧化、维持较好色泽,并且可以将羊排的保质期从8 d延长至11 d[40]添加生姜提取物的样品蛋白质羰基的形成量显著降低,且TBARs值显著低于未添加的空白组[42]羊肉饼贮藏9 d内TBARs值均未超过2 mg MDA/kg,且羰基含量显著降低[44]橡木提取物DPPH自由基清除能力为(31.20±5.66) mmol/g,ABTS阳离子自由基清除能力为(32.00±3.39) mmol/g(以TE当量计)猪肉于肉饼中加入1%橡木提取物橡木提取物的添加量与自由基清除活性呈正相关,使脂质氧化反应产生的挥发性化合物显著减少[43]萝卜、甜菜根提取物萝卜、甜菜根的DPPH自由基清除能力分别为1 537.65、7 140 mg/g(以Trolox当量计);ABTS阳离子自由基清除能力分别为783.2、429.33 mg/100 g(以VC当量计)猪肉香肠添加1%萝卜粉于发酵干香肠中萝卜粉的添加可以显著抑制香肠的脂质氧化,有效保持香肠色泽[34]
3.2.1 果蔬来源的植物活性成分抑菌应用效果
果蔬中富含β-胡萝卜素、抗坏血酸、核黄素和叶酸等功能活性成分,具备一定的抑菌活性。甜菜根富含多酚化合物、甜菜碱和抗坏血酸,研究证实甜菜根提取物对大肠杆菌、铜绿假单胞菌、金黄色葡萄球菌和蜡样芽孢杆菌具有抑制作用,其对单核细胞增生李斯特菌最小抑菌质量浓度(minimal inhibitory concentration,MIC)为20 mg/mL[46-47]。Gong Shaoying等[48]将甜菜根提取物应用于熟猪肉中发现,提取物可以抑制单核细胞增生李斯特菌的生长,并且降低其在细胞内ATP水平,甜菜根通过降低ROS水平来诱导单核细胞增生李斯特菌凋亡样死亡,但具体机制还需进一步研究。
添加1.0%或1.5%石榴皮提取物的水牛肉与添加0.01%的BHT相比,显示出更强的抑菌活性,可将货架期延长7 d[49]。用450 μg/g的葡萄籽、葡萄渣提取物和柑橘提取物处理牛肉饼后发现,添加柑橘提取物的牛肉饼具有更低的菌落总数、大肠菌群数和乳酸菌数,通过破坏细胞膜降低细胞活力,从而对细菌起到抑制作用[50]。
3.2.2 草药和香料植物精油抑菌应用效果
草药和香辛料植物精油是由植物活性成分混合而成的疏水性液体,其抑菌活性和植物活性成分对细菌细胞结构的作用有关,精油可以直接靶向作用于细菌细胞,其中含有的抑菌成分可以显著降低食品中微生物及酶的活性,并被食品和药物管理局评定为公认安全的食品添加剂。
一项研究将丁香精油应用于猪肉后发现,丁香精油通过抑制金黄色葡萄球菌基因表达从而抑制了金黄色葡萄球菌的生长,贮藏7 d内在抑菌的同时保持了猪肉品质[51]。而各添加量的百里香精油均可抑制肉肠中凝固酶阳性葡萄球菌的生长、减少微生物数量,百里香精油对金黄色葡萄球菌和大肠杆菌的MIC均为9.17 mg/mL,对其最小杀菌质量浓度(minimum bactericidal concentration,MBC)分别为9.17、36.68 mg/mL,其在最高添加量下(0.95%)会抑制需氧嗜温细菌,可以作为肉肠中硝酸盐和亚硝酸盐的替代物[52]。Karam等[53]向腌制牛肉中直接添加百里香和牛至精油,混合精油对荧光假单胞菌、大肠杆菌和金黄色葡萄球菌的MIC分别为2.250 0、1.125 5、0.560 0 g/L,MBC分别为2.250 0、2.250 0、1.125 0 g/L,在0.8%添加量下对腌制牛肉中的酵母菌、霉菌及大肠菌群表现出很强的抗菌活性。而在羊肉中添加肉桂精油可以显著降低菌落总数、乳酸菌和肠杆菌科的数量[54]。
肉制品中的蛋白质、脂质等与抑菌成分的相互作用会影响抑菌剂的效果和稳定性[55],植物精油由于其挥发性的特点易被迅速消耗[56];一些亲脂性食物成分(蛋白质和脂肪)会与精油相互作用,使其有效浓度降低;天然活性成分在水相中的溶解度有限,所以当天然活性物质应用于食品体系中,生物活性的显著下降会导致抑菌活性降低[57]。已有文献[58]表明,百里香精油可以降低肉中单核细胞增生李斯特菌数量,但由于蛋白质和脂质的存在,其抑菌能力下降;Cava等[59]研究发现,肉桂精油和丁香精油在脂肪存在的条件下对单核细胞增生李斯特菌的抑菌活性降低,可能是由于蛋白质或脂肪通过吸收精油而屏蔽了抑菌作用[60]。一项研究在牛肉饼贮藏期间添加了黄芩叶片提取的精油发现,黄芩叶片精油对单核细胞增生李斯特菌的MIC和MBC均为2 mg/mL,对大肠杆菌的MIC和MBC分别为4、2 mg/mL,精油可以抑制大肠杆菌和单核细胞增生李斯特菌的生长,但到15 d后又重新生长,分析原因可能是精油与肉类成分的相互作用降低了其抑菌能力[61]。
一部分植物精油难溶于水、易挥发的特性会限制其应用于肉制品加工过程中,所以一般采用水包油乳液作为载体来保护精油活性[62],如改善疏水性化合物在整个食品基质中的溶解度和均匀分布性,即使在浓度较低的情况下也可以具备更高的稳定性及抑菌活性[63]。将含有生姜精油的纳米乳液(6%)应用于鸡胸肉,在贮藏期12 d内总需氧嗜冷菌显著减少,抗菌活性显著提高(P<0.05)[63]。而含有肉桂精油和迷迭香提取物的纳米乳液对大肠杆菌、枯草芽孢杆菌和金黄色葡萄球菌有显著的抑菌活性,与其他处理相比,纳米乳液可以使鸡肉饼的货架期延长4 d[64]。
此外,与散装肉桂精油相比,肉桂精油纳米乳液不仅可以显著维持鱼肉颜色和质地,还可以延长冷藏鱼肉的保质期[65]。当肉桂精油纳米乳液添加量11 429 mg/L时,可以显著减少鲈鱼片中0.5~1.5(lg(CFU/g))的初始细菌数量,可有效延缓冷藏过程中细菌的生长,可以将肉桂精油纳米乳液用于抑制污染大肠杆菌和其他食源性病原体的鱼片[66]。
植物活性成分在肉制品中抑菌应用部分研究如表3所示。
表3 植物活性成分在肉制品中抑菌应用
Table 3 Application of natural active substances from plants as antimicrobials in meat products
来源作用菌属抑菌能力肉制品抑菌机理最佳用量抑菌效果参考文献提取物单核细胞增生李斯特菌MIC为20 mg/mL猪肉通过降低ROS水平诱导单核细胞甜菜根增生李斯特菌细胞凋亡样死亡2 MIC熟猪肉在2 MIC甜菜根提取物处理后的单核细胞增生李斯特菌数量比对照组减少0.84(lg(CFU/g))[48]石榴皮提取物//牛肉对细胞壁和细胞膜的破坏石榴皮提取物添加量分别为1.0、1.5%与未添加提取物相比,添加石榴皮提取物的水牛肉在4 ℃条件下,可延长货架期7 d,表现出明显的抑菌作用[49]葡萄籽、柑橘提取物单核细胞增生李斯特菌/腌制牛肉饼对细胞壁和细胞膜的破坏;大肠杆菌、对蛋白质和遗传物质结构的破坏提取物添加量450 μg/g在抑制蛋白氧化和脂质氧化的条件下,零售的第9天牛肉饼中均未检测到任何致病微生物[50]丁香精油金黄色葡萄球菌MIC和MBC分别为1、2 mg/mL猪肉对蛋白质和遗传物质结构的破坏;对细胞内能量代谢过程的干扰2 MIC丁香精油可以明显抑制猪肉中金黄色葡萄球菌的生长,金黄色葡萄球菌初始菌落数为4.3(lg(CFU/g)),7 d后,对照组及精油组菌落数分别增加至6.3、4.6(lg(CFU/g))[51]黄芩叶片精油单核细胞增生李斯特菌、大肠杆菌MIC均为2 mg/mL,MBC分别为4、2 mg/mL腌制牛肉饼对细胞壁和细胞膜的破坏,细胞内容物外漏1、2 mg/mL精油与未添加精油样品相比,添加精油的牛肉饼在7 ℃、15 d内显著抑制了大肠杆菌和单核细胞增生李斯特菌的生长[61]肉桂皮精油大肠杆菌/羊肉饼细胞壁和细胞膜被破坏,细胞内成分外漏;对蛋白质和遗传物质的破坏0.025%、0.050%肉桂皮精油随着肉桂皮精油添加量的增加,微生物计数显著降低(P<0.05);与对照组相比,添加0.5%肉桂皮精油的样品贮藏12、16 d的大肠杆菌数量分别减少到0.9、1.1(lg(CFU/g))[54]生姜精油革兰氏阳性细菌/调理鸡肉制品对细胞壁和细胞膜的破坏,细胞内容物外漏最终添加量为6%的生姜精油纳米乳液与常规乳液对比,涂抹6%生姜精油纳米乳液的冷藏鸡肉片的总需氧嗜铬细菌在12 d内显著减少,且对鼠伤寒沙门氏菌和单核细胞增生李斯特菌的抗菌潜力分别增加57%和39%[63]百里香、牛至精油荧光假单胞菌、大肠杆菌、金黄色葡萄球菌MIC分别为2.250、1.125、0.560 g/L;MBC分别为2.250、2.250、1.125 g/L腌制牛肉对细胞壁和细胞膜的破坏,细胞内容物外漏最终添加量为0.8%的百里香酚和香芹酚等量混合活性成分混合物浓度越高,对微生物物种(假单胞菌、大肠杆菌群、肉芽孢杆菌)的减少率越高[53]百里香精油金黄色葡萄球菌和大肠杆菌MIC均为9.17 mg/mL,MBC分别为9.17、36.68 mg/mL肉肠对细胞壁和细胞膜的破坏,细胞内容物外漏0.95%百里香精油与对照样品相比,0.95%、0.009 5%和0.000 95%的精油对凝固酶阳性葡萄球菌的抑菌能力较高[52]肉桂精油、迷迭香提取物大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌抑制圈直径分别为(8.85±0.21)、(9.05±0.08)、(9.81±0.29) mm鸡肉饼/1%迷迭香提取物、0.5%肉桂精油纳米乳液包覆可有效控制即食鸡肉饼冷藏16 d(4 ℃)的失水、pH值变化以及菌落总数、总挥发性盐基氮含量、TBARs值的增加,并且鸡肉饼的货架期可延长4 d以上[64]黄芪渣水提取物金黄色葡萄球菌、大肠杆菌MIC分别为12.5、25.0 g/L猪肉香肠花青素的存在导致微生物减少,起到抗菌作用2%黄芪渣提取物添加提取物的新鲜香肠在(1±1) ℃贮藏4 d时,好氧嗜冷菌、好氧中间菌、乳酸菌的数量减少1(lg(CFU/[67]辣椒提取物大肠杆菌/猪肉香肠/0.2%苦参与1%辣椒组合苦参、添加提取物的猪肉肠中有益的葡萄球菌和酵母念珠菌数量较高,而大肠杆菌和有害真菌数量较低;苦参与辣椒联合使用可以替代亚硝酸盐作用于典型红腌制颜色和控制微生物群落[68]
许多研究表明,当植物提取物中含有2 种及以上活性成分联合使用时,其产生的效果大于同一剂量单一物质的效果[69]。为使肉制品加工过程中的抗氧化及抑菌效果更佳,有研究将天然活性成分复配添加至肉制品中。表4总结了目前天然活性成分以复配形式添加在肉制品中以起到更强抗氧化及抑菌作用的研究与应用。
表4 肉制品中植物活性成分的复配协同应用效果
Table 4 Synergistic application of natural active ingredients from plants in meat products
来源肉制品最佳用量抗氧化抗菌参考文献抗氧化能力影响抑菌能力影响果肉的纤维提取物鸡胸肉在肉饼中质量比2%/添加提取物的肉饼中铁还原能力提高77%~157%//[70]日本李子果皮和蔓越莓和黑樱桃果渣提取物火腿将配料中10%的水替换成2%的蔓越莓和黑樱桃提取物ABTS阳离子自由基清除能力0.627 mg/mL(以TE当量计)添加2%提取物的汉堡包、熟火腿中测得最高的抗氧化潜力,总酚含量分别为1.45、2.01 mg/mL(以GAE当量计),ABTS阳离子自由基清除能力分别为9.82、15.66 mg/mL(以TE当量计),氧自由基抗氧化能力分别为13.58、12.08 mg/mL(以TE当量计)//[71]橙皮苷、迷迭香提取物猪肉香肠添加500 mg/kg甜橙提取物、250 mg/kg针叶樱桃提取物和3 000 mg/kg生菜、芝麻菜、豆瓣菜于香肠中/添加甜橙提取物的香肠可以显著抑制蛋白质和脂质氧化/单核细胞增生李斯特菌甜橙及迷迭香提取物添加于肉制品,抑制细胞中蛋白质的合成,对细菌生长起抑制作用,使干腌香肠可以在冷藏库中贮藏150 d且不影响产品感官[72]山楂叶、银杏叶、竹叶、红皮花生提取物发酵猪肉香肠山楂叶、银杏叶、竹叶和红皮花生提取物的最佳混合比例为2∶2∶5∶9//对大肠杆菌的MIC为1.3 mg/mL提取物的添加显著抑制了大肠杆菌的生长,减少了大肠杆菌的数量[73]茴香和肉桂精油腌制肉饼体积分数1%的茴香精油和肉桂醛/茴香精油/肉桂醛的食用纳米乳液能有效抑制肉制品脂质氧化程度棕榈油、牛至、百里香羊肉香叶醇和香芹酚以1∶2比例混合,最终精油体积分数为5%//革兰氏阳性蜡样芽孢杆菌MTCC430、革兰氏阴性大肠杆菌MTCC443革兰氏阳性蜡样芽孢杆菌MTCC430、革兰氏阴性大肠杆菌MTCC443茴香精油/肉桂醛的食用纳米乳液提高了猪肉饼的保鲜效果,并将保质期从6 d延长至10 d与非乳液配方相比,香叶醇和香芹酚的乳液涂料溶液抗菌性更好,在4 ℃条件下可将保质期延长至9 d[74][75]百里香、肉桂、丁香精油鸡胸肉20 g/L的三重精油组合//对荧光假单胞菌的FICI最低为0.3基于MIC设计的精油组合具有抑菌作用,并抑制了鸡胸肉中荧光假单胞菌的生长[76]
Basanta等[70]将李子的果皮及果肉的纤维颗粒进行混合,将混合提取物以1.6%的添加量加入鸡肉饼中。与对照组相比,纤维颗粒的添加减少了肉饼中50% TBARs的生成、肉饼的2 价铁离子还原能力高出77%~157%。而在火腿的制备过程中添加2%蔓越莓和黑樱桃提取物显著提高了其在体外模拟消化过程中口腔和胃消化阶段的抗氧化能力[71]。
酚酸和类黄酮是草药和香料中最常见的生物活性化合物,草药还含有酚类二萜(迷迭香醇)、挥发物(蒎烯和1,8-桉叶醇)和苯丙烷类化合物(百里酚、丁香酚和香芹酚)。将迷迭香提取物、甜橙提取物分别与蔬菜提取物(生菜、芝麻菜和豆瓣菜、菠菜和芹菜、甜菜)混合添加至香肠中发现,迷迭香提取物的添加不仅对肉制品起到延缓氧化作用,还可以达到良好的抑菌效果。天然活性物质与富含脯氨酸的蛋白质不可逆地形成复合物,通过抑制细胞蛋白质的合成达到抑菌作用。并且,添加500 mg/kg甜橙提取物与250 mg/kg针叶樱桃提取物和3 000 mg/kg蔬菜提取物(生菜、芝麻菜、豆瓣菜)于香肠中对其抗氧化作用最强[72]。Dang Yali等[73]将山楂叶、银杏叶、竹叶与红皮花生按照2∶2∶5∶9比例混合后添加6%的混合提取物于发酵猪肉香肠中,混合提取物对大肠杆菌的MIC为1.3 mg/mL,提取物可以通过去除大肠杆菌细胞壁和细胞膜结构显著抑制大肠杆菌的生长。将茴香精油、肉桂醛含量分别为1%的纳米乳液涂抹于猪肉肉饼中,可以显著抑制大肠杆菌和金黄色葡萄球菌的生长,将货架期从6 d延长至10 d[74]。Syed等[75]发现,基于不同比例的香叶醇和香芹酚的水包油乳液对于羊肉具有同样显著的抑菌活性,香芹酚通过释放脂多糖分解了革兰氏阴性细菌的细胞膜,导致细胞内容物外漏,引起细菌活力丧失。与使用纯油、非乳液制剂相比,乳液包埋制剂对细菌病原体、蜡样芽孢杆菌MTCC 430和大肠杆菌MYCC 443具有抑制作用,可将香叶醇和香芹酚的抑菌功效延长至9 d。将百里香、肉桂、丁香精油两两组合或三重组合(4∶1∶2)应用于鸡胸肉中发现,不同精油的双重组合对荧光假单胞菌表现出协同(分级抑菌浓度指数(fractional inhibitory concentration index,FICI)≤0.5)或叠加效应(0.5<FICI≤1.0),且三重组合混合物精油可将MIC减少6~8 倍,在12 d冷藏期间,可显著抑制鸡胸肉中荧光假单胞菌生长[76],分析原因是精油中酚类和醛类可以通过连续抑制氧化链反应、抑制酶的活性以及抑菌剂与菌体细胞壁和细胞膜相互作用,使混合精油具有高抑菌性。
植物活性成分在抑制肉制品脂质与蛋白质氧化、抑制腐败菌和致病菌增殖方面表现出良好性能。与此同时,还可以保持肉制品色泽、质构和风味等品质。在增强肉制品安全性的基础上,对于生产高品质肉制品具有良好的推动作用。但目前的研究仍存在一些局限性,在今后的研究中,可以在以下几方面加以深入:1)阐明植物活性成分的抗氧化及抑菌机理。在肉制品加工中,多数植物活性成分的活性位点及其抗氧化作用机理仍有待进一步阐明,而抑菌机理的研究大部分是通过分析细胞形态、膜电位等指标变化来验证细胞膜的变化,对于抑菌基因表达的影响因素尚未明确;2)加强植物活性成分复配协同功效的研究。基于协同作用和量效关系开发肉制品用高效植物活性成分配料,保证复配物在具备抑制脂质、蛋白质氧化能力的同时实现靶向抑菌、延长肉制品货架期;3)研究植物活性成分与肉制品风味的协同作用。天然活性成分中含有大量低阈值、易挥发的成分,对肉制品自身风味造成干扰。如何在保证其抗氧化性及抑菌作用的前提下,兼顾最终产品的感官特性及可接受度,实现肉制品加工配料与功能成分的“料剂同源”,需要进一步深入研究。我国具有丰富的植物资源,未来可以加大植物活性成分基础理论研究与产品开发,使植物活性成分逐步成熟应用于肉制品加工中,形成基于“清洁标签”的肉制品系列植物活性成分配料,服务于肉制品健康消费的发展趋势。
[1]LORENZO J M, PATEIRO M. Influence of fat content on physicochemical and oxidative stability of foal liver pate[J]. Meat Science,2013, 95(2): 330-335. DOI:10.1016/j.meatsci.2013.04.045.
[2]LORENZO J M, PATEIRO M, FONTÁN M C G, et al. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver pate[J]. Food Chemistry, 2014, 155: 57-63.DOI:10.1016/j.foodchem.2014.01.038.
[3]DOMINGUEZ R, AGREGAN R, GONCALVES A, et al. Effect of fat replacement by olive oil on the physico-chemical properties,fatty acids, cholesterol and tocopherol content of pate[J]. Grasas y Aceites: International Journal of Fats and Oils, 2016, 67(2): 0629152.DOI:10.3989/gya.0629152.
[4]KINGSTON E R, MONAHAN F J, BUCKLEY D J, et al. Lipid oxidation in cooked pork as affected by vitamin E, cooking and storage conditions[J]. Journal of Food Science, 1998, 63(3): 386-389.DOI:10.1111/j.1365-2621.1998.tb15748.x.
[5]CUNHA L C M, MONTEIRO M L G, LORENZO J M, et al. Natural antioxidants in processing and storage stability of sheep and goat meat products[J]. Food Research International, 2018, 111: 379-390.DOI:10.1016/j.foodres.2018.05.041.
[6]DOMINGUEZ R, GULLON P, PATEIRO M, et al. Tomato as potential source of natural additives for meat industry: a review[J]. Antioxidants,2020, 9(1): 9010073. DOI:10.3390/antiox9010073.
[7]MANESSIS G, KALOGIANNI A I, LAZOU T, et al. Plant-derived natural antioxidants in meat and meat products[J]. Antioxidants, 2020,9(12): 9121215. DOI:10.3390/antiox9121215.
[8]ESTEVEZ M. Critical overview of the use of plant antioxidants in the meat industry: opportunities, innovative applications and future perspectives[J]. Meat Science, 2021, 181: 108610. DOI:10.1016/j.meatsci.2021.108610.
[9]MANZOOR A, YOUSUF B, PANDITH J A, et al. Plant-derived active substances incorporated as antioxidant, antibacterial or antifungal components in coatings/films for food packaging applications[J]. Food Bioscience, 2023, 53: 102717. DOI:10.1016/j.fbio.2023.102717.
[10]AMOLI P I, HADIDI M, HASIRI Z, et al. Incorporation of low molecular weight chitosan in a low-fat beef burger: assessment of technological quality and oxidative stability[J]. Foods, 2021, 10(8):10081959. DOI:10.3390/foods10081959.
[11]EFENBERGER-SZMECHTYK M, NOWAK A, CZYZOWSKA A. Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(1): 149-178. DOI:10.1080/10408398.2020.1722060.
[12]POKORNY J. Are natural antioxidants better and safer than synthetic antioxidants?[J]. European Journal of Lipid Science and Technology,2007, 109(6): 629-642. DOI:10.1002/ejlt.200700064.
[13]HADIDI M, ORELLANA-PALACIOS J C, AGHABABAEI F, et al.Plant by-product antioxidants: control of protein-lipid oxidation in meat and meat products[J]. LWT-Food Science and Technology, 2022,169: 114003. DOI:10.1016/j.lwt.2022.114003.
[14]刘英丽, 于青林, 万真, 等. 发酵剂抗氧化活性对发酵肉制品品质的影响研究进展[J]. 食品科学, 2021, 42(1): 302-312. DOI:10.7506/spkx1002-6630-20200704-052.
[15]LOBO V, PATIL A, PHATAK A, et al. Free radicals, antioxidants and functional foods: impact on human health[J]. Pharmacognosy Reviews,2010, 4(8): 118-126. DOI:10.4103/0973-7847.70902.
[16]ZAMUZ S, MUNEKATA P E S, DZUVOR C K O, et al. The role of phenolic compounds against Listeria monocytogenes in food:a review[J]. Trends in Food Science and Technology, 2021, 110: 385-392. DOI:10.1016/j.tifs.2021.01.068.
[17]张庆霞. 植物源防腐剂的抑菌机理及其在生鲜湿面保鲜中的应用[J]. 食品与发酵工业, 2020, 46(21): 310-316. DOI:10.13995/j.cnki.11-1802/ts.025028.
[18]王梦如, 乔海颜, 柯梦雨, 等. 植物源精油的抑菌机制及其在食品保鲜包装中的应用进展[J]. 食品工业科技, 2021, 43(7): 439-444.DOI:10.13386/j.issn1002-0306.2021040037.
[19]张媛媛, 李艳利, 李书国. 植物源食品防腐剂抑菌机理和效果及在食品保鲜中的应用[J]. 粮油食品科技, 2014, 22(4): 48-53.DOI:10.16210/j.cnki.1007-7561.2014.04.014.
[20]SKROVANKOVA S, SUMCZYNSKI D, MLCEK J, et al. Bioactive compounds and antioxidant activity in different types of berries[J].International Journal of Molecular Sciences, 2015, 16(10): 24673-24706. DOI:10.3390/ijms161024673.
[21]MARTÍN-MATEOS M J, ORTIZ A, CURBELO P, et al. New beef burger formulation with added cherry (pico negro variety) as a potential functional ingredient[J]. Applied Food Research, 2022, 2(2):100132. DOI:10.1016/j.afres.2022.100132.
[22]TURAN E, SIMSEK A. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability,microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions[J]. Meat Science, 2021,178: 108522. DOI:10.1016/j.meatsci.2021.108522.
[23]BABAOGLU A S, UNAL K, DILEK N M, et al. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage[J]. Meat Science, 2022, 187: 108765. DOI:10.1016/j.meatsci.2022.108765.
[24]VILJANEN K, KIVIKARI R, HEINONEN M. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds[J]. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1104-1111. DOI:10.1021/jf034785e.
[25]BELLUCCI E R B, DOS SANTOS J M, CARVALHO L T, et al.Acai extract powder as natural antioxidant on pork patties during the refrigerated storage[J]. Meat Science, 2022, 184: 108667.DOI:10.1016/j.meatsci.2021.108667.
[26]LORENZO J M, GONZÁLEZ-RODRÍGUEZ R M, SÁNCHEZ M, et al.Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical,chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”[J]. Food Research International, 2013, 54(1): 611-620. DOI:10.1016/j.foodres.2013.07.064.
[27]KOWALCZYK M, DOMARADZKI P, MATERSKA M, et al. Effect of the addition of chokeberry leaf extract on the physicochemical and sensory properties of burgers from dark cutting veal[J]. Food Chemistry, 2023, 399: 133978. DOI:10.1016/j.foodchem.2022.133978.
[28]RODRIGUES A S, KUBOTA E H, DA SILVA C G, et al. Banana inflorescences: a cheap raw material with great potential to be used as a natural antioxidant in meat products[J]. Meat Science, 2020, 161:107991. DOI:10.1016/j.meatsci.2019.107991.
[29]MANZOOR A, AHMAD S, YOUSUF B. Effect of bioactive-rich mango peel extract on physicochemical, antioxidant and functional characteristics of chicken sausage[J]. Applied Food Research, 2022,2(2): 100183. DOI:10.1016/j.afres.2022.100183.
[30]QI Suijian, HUANG Hua, HUANG Jiayi, et al. Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and antiobese natural additive in meat products[J]. Food Control, 2015, 50:195-201. DOI:10.1016/j.foodcont.2014.08.047.
[31]FAKHREDDIN S. Textural properties and quality of meat products containing fruit or vegetable products: a review[J]. Journal of Food and Nutrition Research, 2021, 60(3): 187-202. DOI:10.1016/j.fufo.2022.100181.
[32]JIN S K, CHOI J S, YANG H S, et al. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage[J]. Meat Science, 2018, 146: 34-40. DOI:10.1016/j.meatsci.2018.07.032.
[33]AHN S J, KIM H J, LEE N, et al. Characterization of pork patties containing dry radish (Raphanus sativus) leaf and roots[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(3): 413-420.DOI:10.5713/ajas.18.0384.
[34]OZAKI M M, MUNEKATA P E S, JACINTO-VALDERRAMA R A,et al. Beetroot and radish powders as natural nitrite source for fermented dry sausages[J]. Meat Science, 2021, 171: 108275.DOI:10.1016/j.meatsci.2020.108275.
[35]LAVADO G, LADERO L, CAVA R. Cork oak (Quercus suber L.)leaf extracts potential use as natural antioxidants in cooked meat[J].Industrial Crops and Products, 2021, 160: 113086. DOI:10.1016/j.indcrop.2020.113086.
[36]BOEIRA C P, PIOVESAN N, FLORES D C B, et al. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage[J]. Food Chemistry, 2020, 319: 126553. DOI:10.1016/j.foodchem.2020.126553.
[37]ŠOJIĆ B, TOMOVIĆ V, KOCIĆ-TANACKOV S, et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties[J]. LWT-Food Science and Technology, 2020, 130: 109661. DOI:10.1016/j.lwt.2020.109661.
[38]MARTINEZ L, CILLA I, BELTRAN J A, et al. Antioxidant effect of rosemary, borage, green tea, pu-erh tea and ascorbic acid on fresh pork sausages packaged in a modified atmosphere: influence of the presence of sodium chloride[J]. Journal of the Science of Food and Agriculture,2006, 86(9): 1298-1307. DOI:10.1002/jsfa.2492.
[39]LORENZO J M, SINEIRO J, AMADO I R, et al. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties[J]. Meat Science, 2014, 96(1): 526-534. DOI:10.1016/j.meatsci.2013.08.007.
[40]BELLES M, ALONSO V, RONCALES P, et al. Effect of borage and green tea aqueous extracts on the quality of lamb leg chops displayed under retail conditions[J]. Meat Science, 2017, 129: 153-160.DOI:10.1016/j.meatsci.2017.03.003.
[41]DE PAIVA G B, TRINDADE M A, ROMERO J T, et al. Antioxidant effect of acerola fruit powder, rosemary and licorice extract in caiman meat nuggets containing mechanically separated caiman meat[J]. Meat Science, 2021, 173: 108406. DOI:10.1016/j.meatsci.2020.108406.
[42]IVANE N M A, ELYSE F K R, HARUNA S A, et al. The antioxidative potential of ginger extract and its constituent on meat protein isolate under induced Fenton oxidation[J]. Journal of Proteomics,2022, 269: 104723. DOI:10.1016/j.jprot.2022.104723.
[43]SORIANO A, ALANON M E, ALARCON M, et al. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging[J]. Food Research International,2018, 111: 524-533. DOI:10.1016/j.foodres.2018.05.055.
[44]MUÍÑO I, DÍAZ M T, APELEO E, et al. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes[J]. Journal of Cleaner Production,2017, 140: 924-932. DOI:10.1016/j.jclepro.2016.06.175.
[45]THI T T T, NU M N T, THANH T N, et al. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage[J]. Meat Science, 2020, 165: 108106. DOI:10.1016/j.meatsci.2020.108106.
[46]CANADANOVIC-BRUNET J M, SAVATOVIC S S, CETKOVIC G S,et al. Antioxidant and antimicrobial activities of beet root pomace extracts[J]. Czech Journal of Food Sciences, 2011, 29(6): 575-585.DOI:10.17221/210/2010-cjfs.
[47]KUMAR S, BROOKS M S L. Use of red beet (Beta vulgaris L.) for antimicrobial applications: a critical review[J]. Food and Bioprocess Technology, 2018, 11(1): 17-42. DOI:10.1007/s11947-017-1942-z.
[48]GONG Shaoying, JIAO Chaoqin, GUO Ling. Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork[J].LWT-Food Science and Technology, 2022, 165: 113711. DOI:10.1016/j.lwt.2022.113711.
[49]GHIMIRE A, PAUDEL N, POUDEL R. Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis)meat[J]. LWT-Food Science and Technology, 2022, 154: 112690.DOI:10.1016/j.lwt.2021.112690.
[50]BAMBENI T, TAYENGWA T, CHIKWANHA O C, et al.Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties[J]. Meat Science, 2021, 181: 108609. DOI:10.1016/j.meatsci.2021.108609.
[51]LI Jun, LI Changzhu, SHI Ce, et al. Antibacterial mechanisms of clove essential oil against Staphylococcus aureus and its application in pork[J]. International Journal of Food Microbiology, 2022, 380:109864. DOI:10.1016/j.ijfoodmicro.2022.109864.
[52]LAGES L Z, RADUNZ M, GONCALVES B T, et al. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris L.)essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar)[J]. LWT-Food Science and Technology, 2021, 148: 111794.DOI:10.1016/j.lwt.2021.111794.
[53]KARAM L, CHEHAB R, OSAILI T M, et al. Antimicrobial effect of thymol and carvacrol added to a vinegar-based marinade for controlling spoilage of marinated beef (Shawarma) stored in air or vacuum packaging[J]. International Journal of Food Microbiol, 2020,332: 108769. DOI:10.1016/j.ijfoodmicro.2020.108769.
[54]HUSSAIN Z, LI X, ZHANG D, et al. Influence of adding cinnamon bark oil on meat quality of ground lamb during storage at 4 ℃[J]. Meat Science, 2021, 171: 108269. DOI:10.1016/j.meatsci.2020.108269.
[55]ZHANG Lianhua, PIAO Xiangshu. Use of aromatic plantderived essential oils in meat and derived products: phytochemical compositions, functional properties, and encapsulation[J]. Food Bioscience, 2023, 53: 102520. DOI:10.1016/j.fbio.2023.102520.
[56]SYED I, SARKAR P. Ultrasonication-assisted formation and characterization of geraniol and carvacrol-loaded emulsions for enhanced antimicrobial activity against food-borne pathogens[J].Chemical Papers, 2018, 72(10): 2659-2672. DOI:10.1007/s11696-018-0501-z.
[57]SARKAR P, BHUNIA A K, YAO Y. Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice[J]. Food Chemistry, 2017, 217: 155-162. DOI:10.1016/j.foodchem.2016.08.071.
[58]AURELI P, COSTANTINI A, ZOLEA S. Antimicrobial activity of some plant essential oils against Listeria monocytogenes[J]. Journal of Food Protection, 1992, 55(5): 344-348. DOI:10.4315/0362-028x-55.5.344.
[59]CAVA R, NOWAK E, TABOADA A, et al. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk[J]. Journal of Food Protection, 2007, 70(12): 2757-2763. DOI:10.4315/0362-028x-70.12.2757.
[60]PERRICONE M, ARACE E, CORBO M R, et al. Bioactivity of essential oils: a review on their interaction with food components[J].Frontiers in Microbiology, 2015, 139(6): 00076. DOI:10.3389/fmicb.2015.00076.
[61]DA SILVA B D, BERNARDES P C, PINHEIRO P F, et al.Plectranthus amboinicus (Lour.) Spreng. essential oil as a natural alternative for the conservation of beef patties stored under refrigeration[J]. Food Bioscience, 2022, 49: 101896. DOI:10.1016/j.fbio.2022.101896.
[62]MCCLEMENTS D J, DECKER E A, WEISS J. Emulsion-based delivery systems for lipophilioc bioactive components[J]. Journal of Food Science, 2007, 72(8): R109-R124. DOI:10.1111/j.1750-3841.2007.00507.x.
[63]NOORI S, ZEYNALI F, ALMASI H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger(Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets[J]. Food Control, 2018, 84: 312-320.DOI:10.1016/j.foodcont.2017.08.015.
[64]QIU Liqing, ZHANG Min, CHITRAKAR B, et al. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties[J]. Food Packaging and Shelf Life, 2022,34: 100933. DOI:10.1016/j.fpsl.2022.100933.
[65]CHUESIANG P, SANGUANDEEKUL R, SIRIPATRAWAN U. Phase inversion temperature-fabricated cinnamon oil nanoemulsion as a natural preservative for prolonging shelf-life of chilled Asian seabass(Lates calcarifer) fillets[J]. LWT-Food Science and Technology, 2020,125: 109122. DOI:10.1016/j.lwt.2020.109122.
[66]CHUESIANG P, SANGUANDEEKUL R, SIRIPATRAWAN U.Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lutes calcarifer) fillets[J]. Food Control, 2021, 122:107782. DOI:10.1016/j.foodcont.2020.107782.
[67]BALDIN J C, MICHELIN E C, POLIZER Y J, et al.Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity[J]. Meat Science, 2016, 118: 15-21. DOI:10.1016/j.meatsci.2016.03.016.
[68]TANG Renyong, PENG Jiaxuan, CHEN Lin, et al. Combination of flos sophorae and chili pepper as a nitrite alternative improves the antioxidant, microbial communities and quality traits in Chinese sausages[J]. Food Research International, 2021, 141: 110131.DOI:10.1016/j.foodres.2021.110131.
[69]LIU Ruihai. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals[J]. The American Journal of Clinical Nutrition, 2003, 78(3): 517S-520S. DOI:10.1093/ajcn/78.3.517S.
[70]BASANTA M F, RIZZO S A, SZERMAN N, et al. Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties[J]. Food Research International, 2018, 106:1086-1094. DOI:10.1016/j.foodres.2017.12.011.
[71]TAMKUTE L, JANCIUKE G, PUKALSKIENE M, et al. Cranberry and black chokeberry extracts isolated with pressurized ethanol from defatted by supercritical CO2 pomace inhibit colorectal carcinoma cells and increase global antioxidant response of meat products during in vitro digestion[J]. Food Research International, 2022, 161: 111803.DOI:10.1016/j.foodres.2022.111803.
[72]MARTÍNEZ-ZAMORA L, PEÑALVER R, ROS G, et al. Substitution of synthetic nitrates and antioxidants by spices, fruits and vegetables in clean label Spanish chorizo[J]. Food Research International, 2021,139: 109835. DOI:10.1016/j.foodres.2020.109835.
[73]DANG Yali, HAO Li, LI Xiao, et al. Inhibitory mechanism of Chinese herbal medicine extracts on Escherichia coli and its application to fermented-bag sausage[J]. LWT-Food Science and Technology, 2021,140(1): 110825. DOI:10.1016/j.lwt.2020.110825.
[74]SUN Y N, ZHANG M, BHESH B, et al. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde:characterization, antimicrobial property and advantages in pork meat patties application[J]. Food Control, 2021, 127: 108151. DOI:10.1016/j.foodcont.2021.108151.
[75]SYED I, BANERJEE P, SARKAR P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 ℃[J]. Food Control,2020, 107: 106757. DOI:10.1016/j.foodcont.2019.106757.
[76]CHAICHI M, MOHAMMADI A, BADII F, et al. Triple synergistic essential oils prevent pathogenic and spoilage bacteria growth in the refrigerated chicken breast meat[J]. Biocatalysis and Agricultural Biotechnology, 2021, 32: 101926. DOI:10.1016/j.bcab.2021.101926.
Advances in Application of Natural Active Ingredients from Plants in Preservation of Meat Products